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ABSTRACT

Profiling Internet backbone traffic is becoming an increas-
ingly hard problem since users and applications are avoid-
ing detection using traffic obfuscation and encryption. The

key question addressed here lis:it possible to profile traf-
fic at the backbone without relying on its packet and flow

level information, which can be obfuscated? \Ne propose a
novel approach, called Profiling-By-Association (PBAgtth
uses only the IP-to-IP communication graph and information
about some applications used by few IP-hosts (a.k.a. seeds)
The key insight is that IP-hosts tend to communicate more
frequently with hosts involved in the same application ferm
ing communities (or clusters). Profiling few members within
a cluster can “give away” the whole community. Follow-
ing our approach, we develop different algorithms to profile
Internet traffic and evaluate them on real-traces from four
large backbone networks. We show that PBA's accuracy is
on average around 90% with knowledge of only 1% of all
the hosts in a given data set and its runtime is on the order osz

minutes & 5).

1. INTRODUCTION

Traffic profiling is essential in provisioning, man-
aging and securing a network. It allows network
administrators to evaluate what-if questions, such
as: “Is P2P traffic increasing? Is it worth the money
to install an expensive P2P classifier to reduce traffic in
my network?”, “Half of my traffic is encrypted; is that
traffic reqular web traffic or something else (and potentially
malicious)?”, “Will it pay-off to add web-caches to reduce
incoming traffic to my providers?” In today’s networks,
an effective traffic-profiler needs to prevail over the
following challenges. C1: Overcome application
obfuscation (e.g., operate despite encryption). C2:
Operate at the backbone where only partial view of
traffic is typically observed.
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Our goal is to provide a profiling solution that
overcomes both aforementioned challenges. With
respect to C1, obfuscation is particularly challenging,
since it may appear at multiple levels: (i) port level,
with randomization or encryption (i.e., IPsec), (ii)
payload level, with encryption, (iii) flow level, with
timing variations and packet padding, and (iv) con-
nectivity level, with the randomization of connection
patterns. We use the term multi-level obfuscation to
describe this problem, since obfuscation may appear
at multiple levels. Previous methods are not robust
to multi-level obfuscation. Simply put, when a large
portion of traffic is obfuscated, many obfuscated flows
will end up unlabeled or mislabeled by most current
methods. With respect to C2, past research has shown
that traffic profiling approaches which perform well
on enterprise traffic often struggle at the backbone [13,
7, 19]. A promising method uses Google to profile
IPs (a.k.a. UEP) [19] in an effort to overcome C1 and
. However, as reported by its authors, this method
leaves large portions of P2P traffic unclassified (~=40%)
and requires long execution time. Since P2P traffic is
the main traffic class that uses multi-level obfusca-
tion, the problem still remains open. We provide an
extensive literature survey and a discussion on how
our work differs from it in §3.

The motivating insight for this work lies in the
following two key observations. O1: Several appli-
cations tend to form communities (or clusters). In
this work, we use the term community as defined by
modularity [5], to be a set of nodes with higher intra-
community edge-density than a random graph. O2:
For a few hosts it is easy to identify what applications
they use; we will refer to these hosts as the initial
seeds. With respect to O1, we are the first to observe
that application flows in the backbone divide into
tightly-knit communities of IP-hosts, as shown in the
connectivity graph of Figure 1. In the rest of this paper,
we use the term connectivity to refer to this IP-to-IP
graph of interactions: nodes are IP addresses and
edges correspond to flows between the two nodes.
For O2, from our analysis of four large backbone
networks, we observe that some application (e.g., Bit-
torrent) users choose to encrypt their traffic, whereas
some others do not enable encryption. Similarly, few
hosts still use the default ports for some applications
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Figure 1: Applications form communities that are visible
from the Internet backbone. In the graph visualization, nodes
are IP addresses and edges represent flows between IPs. In
this work, we take advantage of these communities in order
to profile all the flows (edges in the graph) in a trace. For
visualization purposes, only traffic from three applications is
visible. To highlightthe three communities we color the nodes
based on their dominant application (better viewed in a color
print-out or a monitor screen). The data is from a peering link
of a large ISP in the US.

(e.g., 6881 for Bittorrent). Therefore, using a payload-
or port-level classifier, we may still classify a small
portion of the traffic. Moreover, other profilers that
do not use ports or payload, such as BLINC [12] and
UEP [19], can also successfully profile small portions
of backbone traffic.

This work introduces the Profiling-By-Associations
(PBA) framework to address the multi-level obfus-
cation problem. Our framework exploits the above
observations (O1 and O2) regarding backbone traffic.
In a nutshell, PBA takes as input an IP-to-IP connec-
tivity graph and information about a small subset of
IP-hosts and produces a prediction about the class of
all the flows (edges) in the graph. Because network
hosts use multiple applications, all our methods
profile flows and not hosts. In this paper, we develop
four novel algorithms based on the PBA framework.
Our best PBA-based algorithm, called HYP, first uses
a community discovery algorithm to identify different
application clusters (O1), as observed in Figure 1.
Then, it uses information about few members from
each community (O2) to profile an entire cluster. With
this two-step approach, we introduce a profiling (guilt)
by association solution to the traffic profiling problem.
In other words, with PBA, we stop looking at “how
the flows of an IP look like” (e.g. number of packets,
or port number used), but instead we focus on “which
other IPs it interacts with.” Our evaluation on four
large backbone networks shows that our algorithms
achieve: (a) high classification accuracy, and (b) high
robustness to different levels of obfuscation.

The highlights of our work can be summarized in
the following:

e We introduce four algorithms based on the PBA
framework and highlight one, the HYP algo-
rithm, with the highest robustness to obfuscation.

e Using only 1% of hosts as seeds, the HYP algo-
rithm labels all flows in our trace without using
payload, port, or flow statistic information and
achieves above 90% accuracy as compared to a
payload-based classifier (for details see §5.2.2).

e HYP can achieve above 80% accuracy with only
10% initial seed, even when 40% of the seeds are
erroneous (for details see §5.2.4).

e The HYPalgorithm is robust to connectivity-level
obfuscation, where hosts open fake connections
to other nodes in order to avoid detection. Even if
hosts open 20 times more connections, HYP per-
formance is reduced by only 9% (for details see
§5.2.6).

e Our algorithms can work together with existing
solutions (e.g., CoralReef [3] or BLINC [12]) and
improve their profiling accuracy by up to 50% (for
details see §5.2.5).

The rest of this paper is structured as follows. In §2
we define the problem. We describe the limitations of
current methods in addressing the multi-level obfus-
cation problem in §3. In §4 we present the details of
our algorithms. We evaluate our algorithms using four
real-world backbone traces in §5. We provide a discus-
sion of various practical and subtle issues of our ap-
proach in §6. Finally, we conclude the paper in §7.

2. PROBLEM DEFINITION

The goal of a traffic profiler is to assign application
labels (e.g., Web, DNS) to all the flows in a packet trace.
We define the multi-level obfuscation traffic profiling
problem as follows. The inputs are:

e A set of hosts H.

o A set of flows F', where each flow f € F'is a pair
(a,b) s.t. a,b € H. Flow f represents a network
communication between hosts a and b.

e A set of flows I, C F or a set of hosts H;, C
H, for whom an application class (e.g., “DNS” or
“Web”) is provided !. We interpret an application
class ¢ for a host h as evidence that h has either an
incoming or outgoing flow of type c.

Given the above, the goal is to produce a function
pba(f) such that Vf € F : pba(f) = te(f), where tc(f)
returns the true application class of flow f.

Robustness to four levels of obfuscation. In this
work, we considers four levels of obfuscation. The
port-level (L1), payload-level (L2), flow-level (L3), and
then connectivity-level (L4). Because traffic can be ob-
fuscated, the pba(f) function should not rely on any
port-, payload-, or flow-level information. It should
also be robust to hosts that try to evade detection by

n this work, we consider Hr, seeds.



Robustness | Robustness | Robustness | Robustness Hich High Low Fast
Method Port Payload Flow Stats Conn. Accurgc at Accu%ac Training Execution
Obfuscation | Encryption | Obfuscation | Obfuscation Backbo};\e on P2Py & Tuning Time
(Level 1) (Level 2) (Level 3) (Level 4) Effort
Coral Reef [3] No - - - - - - -
Payload [16] - No - - - - - -
Flow-based [17] - - No - - - - No
(Mach. Learn.)

Our NLC [8] - - - No - - - No
BLINC [12] - - - - No - No -
Googling [19] - - - - - No No No
Our HYP* - - - - - - - -

Table 1: Comparison of key traffic profiling methods with our HYP algorithm. The table highlight the pros and cons of each
method and their robustness to various levels of obfuscation. HYP is the only profiler that covers all requirements in the table.

*The HYP method is a contribution of this paper.

opening random connections in order to confuse the
profilers (L4). For example, in Figure 1 we see that
eMule hosts have more flows (edges) between them
than with other applications. Our algorithms should
be robust to eMule users that try to evade by open-
ing connections to Email and Game servers in order to
interfere with the formation of communities. More de-
tails on such experiments are found in §5.2.6.

In this work, we are interested in profiling traffic
at the backbone, which is a more challenging prob-
lem. Moreover, other methods such as BLINC [12],
are known to perform good at the edge but poor at
the backbone. As with the vast majority of traffic pro-
filing solution, results do not have to be generated in
real-time. Typically, a network administrator will first
collect packets for some time (e.g., five minutes) and
then analyze the data off-line. As we show next, for
analyzing five minutes of traffic our fastest algorithm
takes less than five minutes to give predictions.

Q: How is this problem different from the “clas-
sic” traffic classification problem?  Most previous
profiling methods aim to learn the descriptive features
(e.g., payload signatures) or behaviors (e.g., number of
open TCP connections) of different traffic classes from
a training set and use that knowledge to classify future
traffic. For example, a classic profiler might observe
(during training) that all App-X flows use port number
6881 and start with three packets less than 200 bytes.
If no other traffic classes have these features, the clas-
sifier will use this description to detect future App-X
traffic. This process assumes that the future traffic will
look like the training traffic. However, in our problem,
the future traffic might be obfuscated at multiple levels
(e.g., using random port and random packet sizes) and
thus look very different than the training traffic.

Profiling granularity: We want to identify applica-
tions at high granularity. We use the following set of
applications: (i) Web, (ii) P2P, (iii) DNS, (iv) Email, (v)
Games, and (vi) Chat.? The most important class is P2P
traffic which is the hardest to detect [13, 19, 12]. There-
fore, a method with high P2P accuracy is highly desir-
able in practice [13].

2The number of classes can vary depending on the goal of a
measurement study, as we review in §3.

3. RELATED WORK

Due to its importance, the traffic profiling problem
has attracted significant attention in the past. How-
ever, the problem is far from being solved. Table 1
summarizes the current key traffic profiling solutions,
highlights their main limitations, and compares them
to our PBA-based algorithms (NLC and HYP). We also
note that other work uses graphs to analyze traffic [11],
but they do not target traffic classification.

We present three factors that affect current traffic
profiling methods at the backbone:

1) The obfuscation factor: In Table 1, the CoralReef [3]
profiler relies only on well-known port numbers
(e.g., port 53 denotes DNS). It performs well with
legacy applications, but not with applications that use
random or dynamically assign ports, such as online
games and P2Ps [13]. Similarly, all methods that
use payload and deep packet inspection (DPI) [16,
18, 15] will fail to classify encrypted traffic. Some
profiling methods can detect traffic with encryption
by relying on flow-level features and statistics (e.g.,
packet sizing information, packet inter-arrival times)
and advanced Machine Learning methods [17, 1,
6, 10]. However, flow-features can be obfuscated
through packet padding and randomization of inter-
packet gap timing. From our study, we observed that
popular applications, such as the uTorrent client for
Bittorrent, currently enables obfuscation at the port
(with randomization), payload (with encryption), and
flow level (with packet padding). Connectivity based
approaches like the NLC algorithm (see §4.2 and [8])
is sensitive to homophily?®, which makes it less robust
to connectivity obfuscation (as we show next in our
evaluation §5.2.6).

2) The location of observation factor: Profiling backbone
traffic provides additional challenges compared to en-
terprise and edge networks [13, 7]. Host-based behav-
ioral approaches, such as BLINC [12] and [21], pro-
file end-hosts using their connections patters, e.g., how
many distinct ports a host uses and how many dis-
tinct IP it communicates with. This approach makes

3Homophﬂy in trace graphs refers to the tendency of neigh-
boring edges having similar applications. It is computed as
the probability of two neighboring edges having the same
application. Two edges are considered neighbors if they
share a common node. See [8] for details.



profiling robust to various levels of obfuscation, as we
show in Table 1. At the backbone, however, we only
observe a small fraction of the connections from each
host (i.e., some of its flows do not pass by the mon-
itoring link; for example, because of multi-homing).
This is why BLINC [12] shows better performance at
the edge, where all the flows of a host are observed,
than at the backbone [13].

3) Awailability of information factor: The most recent
paper on host-profiling (Googling in Table 1) [19] uses
readily available information from the Web in order
to classify end-hosts based on results returned from
the Google search engine. As reported in [19], this
approach does not perform well for applications that
have dynamic behavior, such as P2P protocols. In
addition, this method can not work with anonymized
traffic (randomized IP addresses), and for traffic that
was collected in the past (since the information about
the IPs might not still be available online). Having said
that, we find that this last method is a very promising
seeding process for our needs, especially if the code
becomes publicly available in the future.

Tuning effort and execution time: In Table 1, train-
ing and tuning effort highlights practical challenges.
The BLINC [12] profiler has been reported by oth-
ers [13] to be very hard to fine-tune, because it requires
manual adjustment of 28 parameters for each back-
bone link. Also, the Googling approach [19], requires
careful parsing of Web pages in order to derive the
keywords used for inference, which makes re-writing
the tool from scratch hard. Regarding execution time,
all flow-based machine learning algorithms with high
classification accuracy are reported to require hours of
training and inference [13]. Similarly, NLC also takes
tens of minutes to produce results for some of our
traces (§5). The Googling approach requires issuing
queries to a search engine for each single IP in a trace,
which can take from several minutes up to hours [19].
As we show in §5, our PBA-based HYP algorithm
takes less than five minutes to run in all our traces.
More on the deployment of our algorithms in practice
is discussed in §6.

4. PROFILING-BY-ASSOCIATION (PBA)

PBA provides a general framework for profiling net-
work traffic based on a two-step process: (a) seeding
and (b) inference. The basic steps of this processes are
shown in Figure 2. In a nutshell, with PBA we first
extract connectivity information from a packet trace
and use an external means (e.g., a payload classifier)
to derive initial seeds. Next, we use a graph-based al-
gorithm and profiling-by-association to classify all the
flows in the packet trace.

41 Step A: Seeding

At this step, flows and/or hosts are labeled by some
external means according to their known or surmised
application class (e.g., “DNS” or “Web”). At the level
of flows, it means that the flow is believed to have
been produced by the specified application. At the

PBA Step A PBA Step B

Traffic Graph
+
Initial Seeds

Traffic
Trace

Clasified
Traffic

Extract
Connectivity
Information

Figure 2: Overview of PBA framework for traffic profiling.

host level, it means that the host is believed to have
some amount of traffic of the specified type. We re-
fer to these initial labels as seeds. Seeds may be ob-
tained by: (a) information from a system administra-
tor (e.g., using known IP addresses of server), (b) run-
ning port or payload based traffic classifiers on non-
obfuscated portions of a trace, or (c) using techniques
such as “Googling the Internet” [19]. More on seed-
ing sources is discussed in §6. We believe using seeds
on host to be more realistic since several host-profiling
solution (see §3), report information at the host-level.
Moreover, it is more likely for a host to be persistent
over time (e.g., a server) than any of its flows.

Our PBA based algorithms are indifferent to the
source of seed information; and as we show in §5,
are robust to both random errors and systematic bias
in seed labels. We emphasize that in order for PBA
to be effective, seeds need not be 100% correct nor
widely available (e.g., 1% of hosts or flows is generally
sufficient). Seeding is not unique to PBA; all machine-
learning based methods require seeds (in form of
training sets). However, PBA has a big advantage over
traditional machine-learning based methods in that
PBA’s performance is not dependent on the training
and testing sets having the same feature characteristics
(e.g. packet sizes).

W.rt. seeding, in our experiments (§5) we evaluate
the following two cases. Recall that the seed we use
is the information that a given IP-host is “known” to
participate in a particular application.

(a) The base case: Agnostic to the real traffic mix. Unless
stated otherwise, in all our experiments, we randomly
select an equal number of initial hosts for each applica-
tion class. In other words, we do not assume that our
seeds accurately represent the traffic mix in the trace.
With this seeding process, each application class starts
with an equal chance to be the most popular class in
the connectivity graph.*

(b) The practical case: Using other profiling methods.
We conduct experiments where the seed is obtained
by other existing or combinations of existing methods.

‘In some instances, the base-case may require a certain
number of seeds for an application, which does not appear
enough in the trace. This is only an issue when we experi-
ment with larger seed sizes (e.g., 5% and 10%). In such in-
stances, we label the maximum number of seeds we can for
that class and distribute the remaining seed slots equally to
the remaining classes. Note that our seed methodology guar-
antees that the largest classes in a trace such as DNS, Web,
P2P, and Email get equal share of initial seeds for each exper-
iment.



Algo. Step 1 Step 2 Step 3
Inference
NLC NLC - -
Inference
CLUS CLUS - -
Inference Inference Merge results
C+NLC CLUS NLC from Steps 1&2
Inference Seeding from
CSEED CLUS Step 1, then -
Inference NLC
Inter-cluster
Inference NLC on .
HYP edge labelin
CLUS Hypergraph lgieuristié &

Table 2: Summary of the algorithms used for the inference
step (step B) of the PBA framework.

Our vision for a practical deployment is as follows:
Existing methods can be used to provide only the
information for which they have high confidence. PBA
takes that information as seeds and performs inference
(see §4.2).

4.2 Step B: Inference

For the inference step, we present five PBA algo-
rithms that make use of network structure in two dis-
tinct ways. First, by exploiting the local structure of
the trace graph, where neighboring edges (flows) are
likely to share the same application class i.e., graphs
exhibit edge homophily [8]. We see this visually in Fig-
ure 1, where if we isolate any single node and inspect
its edges and the edges of its neighbors, they are all
likely to be of the same application (e.g., eMule). Sec-
ond, they utilize the global structure of the graph to
detect communities of hosts. As we see in Figure 1, all
edges in such communities tend to share common ap-
plication. There are various community discovery al-
gorithms [2,9, 5, 4, 20]. As we show in §5, the best one
in terms of accuracy and speed for our problem is Lou-
vain [2]. PBA’s inference step can use local structure
only, global structure only, or a combination of local
and global structures. In this paper, we consider five
PBA-based algorithms as listed in Table 2. The NLC al-
gorithm was introduced in an earlier 5-page paper [8].
We include a short description of NLC for complete-
ness and report it in our experiments for comparison.
All the other algorithms are contributions of this work.
Next, we provide details for all five algorithms.

Algorithm using local structure.

Neighboring Link Classifier (NLC): Flows are iter-
atively labeled according to the labels of adjacent flows
(i.e., flows that share a common IP). In more details,
at first all edges of the seeds are labeled to be of the
same class. Next, at each iteration step, for each un-
labeled edge, the output of NLC is a probability dis-
tribution over the application classes —i.e., Vu € U,
Ve € C : P(label(u) = c|lu), where U is the set of un-
labeled edges u = (s,d) in the trace graph and C is
the set of application classes that we want to classify
(e.g., C = {P2P, DNS, Web}). Where, P(label(u) =
clu) = (ps + pa)/2, and ps and py denote the ratio
of edges of the end-nodes s and d of edge u, that are
of class c. To obtain a classification for an unlabeled

edge, we select the application with the highest prob-
ability on that unlabeled edge: Vu € U : label(u) =
argmazcec(P(label(u) = clu)). The iteration process
is repeated until all edges are labeled. Here, we use 10
iterations which are enough for convergence. This ap-
proach is described in detail in our previous work [8].

Algorithm using global structure.

Clustering (CLUS): We cluster hosts using LUV
and include in each cluster all flows for which both
endpoints fall in the cluster (a.k.a. intra-cluster edges).
How we label each cluster will be explained in the next
paragraph. After a cluster is labeled, we assign the
same label to every flow in the cluster. Flows between
two clusters (a.k.a. inter-cluster edges) where both
clusters share the same label are also assigned that
label. Edges in clusters with no seeds, and inter-cluster
edges between clusters that have different labels are
left unlabeled.

Our cluster labeling process is as follows. For
each cluster, we calculate the normalized frequency
nFreq(c) of each class by dividing the seeds of that
class in the cluster by the total number of seeds of the
class. If a cluster has seeds of only one application
it takes the label of that application class. Else, if the
cluster contains seeds from more than one class, we
re-apply the clustering step to that cluster alone. The
process is recursively repeated until all sub-clusters
have no more than one class with nFreg(c) > 0.01, or
if the clustering algorithm does not further divide the
sub-cluster. We observed that any small value, other
than 0.01, is sufficient for the recursion to terminate in
a reasonable time. At the end of the recursion, each
cluster takes the label of the class with the highest
nFreq(c) in the cluster. The normalized frequency
guarantees that no class will be favored because it
is easier to find seeds. This makes our classification
processes more realistic in practice. For example, if
payload is used for seeding, P2P will typically have
far fewer seeds than DNS, since DNS is easier to
be classified. In a mixed cluster of P2P and DNS,
DNS might be the smaller class, but have more seeds
because of its higher total number of seeds.

Algorithms combining local and global structures.

Clustering+NLC (C+NLC): As we show in Table 2,
the inference part of this algorithm has three steps. At
the first step, we apply CLUS to label as many flows
possible. At the second step, we independently run
NLC and get a new prediction for all the flows. At the
last step we merge the two predictions by keeping all
the labels by CLUS and use the predictions from NLC
to classify the remaining flows. This algorithm is based
on our observation that CLUS alone gives predictions
with high accuracy, but leaves several edges without
any prediction, i.e., it has low coverage. The coverage
problem is here solved by using the prediction from
NLC.

Cluster-Seeded NLC (CSEED): The inference
process has two steps using CLUS and NLC. Unlike



C+NLC, the two algorithms are not executed indepen-
dently. First, we apply CLUS and label as many flows
possible. Next, we use all the predictions from step 1
and use them to seed NLC. This algorithm is always
slower than C+NLC since the two inferences need to
be executed sequentially. The motivation behind this
method is similar to the algorithm above (C+NLC).

Hypergraph-based NLC (HYP): We apply CLUS
and then apply NLC to the inter-cluster graph (i.e.,
the hypergraph) to label all clusters for which we do
not have seeds. The inter-cluster graph is created by
collapsing each cluster to a single node and preserving
only inter-cluster flows. Inter-cluster flows f = (u,v)
are assigned the inferred class of the endpoint (ie.,
u or v) with the largest intra-cluster degree (i.e., the
number of flows for a host within its cluster).

The heuristic for labeling inter-cluster edges is based
on the observation that servers have high degree. We
give a toy example to explain this. We assume a host
u is involved in a P2P application and also contacts a
Web server v. This edge (u,v) will likely be between
the P2P cluster of node u and the Web cluster of node v.
Since Web servers are typically of high degree, the de-
gree of v will be higher than the degree of u. Therefore,
the prediction for edge u, v will be Web, which is the
correct in this example. As we show next, HYP gives
high classification accuracy and shows robustness to
all four levels of obfuscation!

5. EVALUATION

This section presents our experiments on (a) the ro-
bustness of our techniques to obfuscation and (b) the
impact of practical factors. For the former, we look at
error/noise in seeding and perturbations to connectiv-
ity structure of the trace graph. For the latter, we look
at location of observation (backbone link) and specific
implementation choices of our techniques.

All our traces have both encrypted (up to 40%) and
unencrypted traffic. To extract ground truth for our
evaluation, we manually classify all the unencrypted
traffic using payload signatures. In our experiments,
we emulate high obfuscation setting by “hiding” (set-
ting as unknown) and introducing intentional errors
to parts of the known traffic. Next, we observe how
our methods can both correct these errors as well as
successfully predict the labels for all the “hidden” por-
tions of the known traffic.

In §5.1, we describe the four real-world backbone
datasets used in our experiments, the derivation of
ground-truth for evaluation purposes, the metrics
used to quantitatively evaluate our approach, and our
experimental methodology. All our experiments are
described in §5.2 and summarized in Table 4.

5.1 Experimental Setup

5.1.1 Backbone data sets

We applied our methods to four different backbone
links. Table 3 presents a summary of trace character-
istics, calculated over a five minute slice of each trace.

Name: MEN WIDE PAIX BRAZ
Year 2003 2006 2004 2007
Mbps 213.27 26.21 788.62 304.47

# Flows 909,684 | 157,090 | 2,671,885 | 787,783

#1IPs 263865 | 92239 531057 | 402309
%UDP 32.89 72.46 33.42 49.13
%TCP 67.11 27.54 66.58 50.87
LCC 87.14 89.71 92.10 99.98
Avg. Degree 3.17 2.33 4.50 2.67

Application Breakdown

P2P 11.93 0.84 20.52 24.88
Web 51.71 13.62 54.33 25.86
DNS 17.85 37.24 14.83 3.47
Email 0.88 2.57 3.64 1.67
Games 0.83 0.02 1.02 0.55
Other 0.80 1.57 2.76 2.28
Unknown 16.00 44.14 2.90 41.29
Total 100.00 | 100.00 100.00 100.00

Table 3: Summary of backbone traces. All traffic percent-
ages refer to flows.

The traces are collected over different geographic lo-
cations (South America, US, and Japan) with diversity
in the application mixing (see Table 3). We define a
flow using the well-known 5-tuple: (srcl P,srcPort,
dst| P, dst Port, protocol ). In all traces, there ex-
ists a large connected component (LCC) that contains
the vast majority of flows, ranging from 87.1% to 99.9%
depending on the trace. We describe each data set in
more detail below.

PAIX: This data set was collected from an OC48 link
of a commercial large US Tier-1 ISP at the Palo Alto In-
ternet eXchange (PAIX), connecting San-Jose with Seat-
tle. This is the largest trace in our data set in terms
of traffic volume, observed flows, and distinct IP ad-
dresses. The monitor captured traffic from both direc-
tions of the traffic link. In addition, the data set con-
tains up to 16 bytes of payload from each packet.

MEFN: This trace contains traffic from a peering link
of a large ISP in the west-coast US. The monitor cap-
tured traffic from both directions of the traffic link. In
addition, the data set contains up to 16 bytes of pay-
load from each packet. The MEN and PAIX are kindly
provided by CAIDA (www. cai da. or g).

WIDE: This trace is collected from a low band-
width (100 Mbps Ethernet) transpacific backbone link
connecting the US with WIDE (Japan) and carries
commodity traffic of the WIDE member organization.
The trace contains traffic from both directions of the
link. For each packet, it contains full packet header
and 40 bytes of payload. This trace is kindly provided
by MAWI (mawi . wi de. ad. j p/ mawi /).

BRAZ: This data set represents a smaller backbone
link. The captured traffic is from a 1 Gbps Ethernet
link that connects a small stub ISP (residential users)
to a larger provider. This trace is closer to the edge
of the network and captures all the public traffic of
the small ISP. This trace is kindly provided by Narus
(Www. nar us. com.

Connectivity Information: Our connectivity infor-
mation is an IP-to-IP interaction graph (a.k.a. a trace
graph or connectivity graph). We form links between
IP hosts (i.e., nodes) that share at least one flow (i.e.,
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Table 4: Details of all the experiments in the Evaluation Section (§5.2).

edge) between them. If multiple flows of the same ap-
plication exist between two IP nodes, they are merged
into a single link, which is then assigned that applica-
tion label. In our traces, 99.9% of all parallel flows are
classified to be of the same application by our payload-
classifiers. As expected, the majority of parallel edges
belong to Web. Our final graph is undirected and con-
tains no self-loops.

5.1.2 Obtaining ground-truth

For evaluation purposes, we need to obtain ground-
truth (namely, application information on flows). All
our traces contain payload information, thereby en-
abling us to label flows with their applications using.
In this paper, we used an existing payload-based
classifier from CAIDA (ww. cai da. or g), that was
also used in other traffic profiling work [12, 13].

Payload classifiers report as “Unknown” flows that
do not match any of their known signatures (e.g., due
to encryption). Also, payload classifiers cannot clas-
sify flows that do not carry any payload (e.g. because
of worm scanning activity and other failed TCP con-
nections). Since we are using payload classifiers as our
ground-truth providers, we do not use these unknown
and unclassified flows in our evaluation.

For each trace, our chosen payload-based classifiers
label flows according to the following main classes:
P2P, DNS, Email, Web, Games, Chat, Rest, and Unknown.
In our experiments, we consider all application classes
that contribute to more than 0.1% of all the flows in
the trace. We made this choice because sparse appli-
cations produce results that are statistically difficult to
interpret.

5.1.3 Evaluation metrics

We compare the flow-labeling of our methods to the
ground-truth (i.e., the set of flows that are “known” to
our payload-classifiers). Our performance metrics are
as follows:

Coverage: Percentage of flows being labeled.

Overall accuracy: Percentage of accurate labels over
all flows. This metric gives the probability of a correct
prediction to any randomly selected flow.

Precision, Recall, and Fl-score per application class:
Precision is the ratio of true-positives to the sum
of true- and false-positives. Recall is the ratio of
true-positives to the sum of true-positives and false-
negatives. Fl-score is the harmonic mean of Precision
and Recall.

5.1.4 Experimental methodology

Unless otherwise stated, all our experiments follow
the same methodology. A portion of the IP hosts with
labeled flows are selected to be the seeds. We apply
our PBA algorithms on each trace and classify all the
flows. Given that seeds can have errors, in all our
experiments we allow the initial labels on flows to
change. For each experiment, we run 20 independent
trials each time selecting a different set of initial seeds.
We then report the average, minimum, and maximum
performance metrics computed over all the flows with
ground-truth.

Baseline classifier. In some experiments, we com-
pared our techniques with a “baseline” classifier. This
classifier does not perform any inference, but assumes
perfect knowledge about the seeds used in the experi-
ment. As discussed in §4.1, none of our techniques as-
sumes perfect knowledge about the seeds, since in our
evaluation typically only a fraction of a seed’s flows is
known. Since seeds are on IP hosts and results are re-
ported on flows, the baseline classifier is a good indi-
cator of how challenging the problem at hand really is.
For example, in some traces, the 1% of hosts selected as
seeds contribute to 2% or more of the total flows. The
baseline results capture exactly this.

5.2 Experimental Results

Table 4 summarizes the various experiments that we
conducted. The first and second columns provide an
ID and a short description of each experiment, respec-
tively. The third column, titled “Seeding Source,” lists
the specific method used to extract seeds; a “Payload”
entry here means the source was the same as the one
used for our ground-truth labels. The fourth column,
“Seed Size,” indicates the portion of hosts for which
we had seeds. The fifth column, “Seed Errors,” lists
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Figure 3: Performance for various community discovery al-
gorithms on trace graphs. The top plot shows the accuracy
of PBA's CLUS algorithm. The bottom plot shows execution
time for the WIDE trace. Execution times for other traces
were similar.
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Figure 4: Classification results for various PBA algorithms
using 1% seed size.

whether errors were intentionally introduced in the
seeds; and if so, whether they were random (where
a seed was reassigned another class at random) or
targeted (where seeds from a particular class were
changed to a specific class). The sixth column, “Con-
nectivity Graph,” indicates if the initial IP-to-IP graph
is affected by the experiment (e.g., whether additional
connections were inserted intentionally to obfuscate
other traffic). The seventh column indicates whether
the experiment dealt with obfuscation and at which
levels (see §2 for the different levels). The last column
lists the section where the experiment is described.

5.2.1 Comparing community discovery algorithms

Most PBA’s algorithm use a community discovery
algorithm. Here we evaluate the CLUS algorithm
(§4.2), using five different community discovery algo-
rithms: Louvain (LUV) [2], Fast Modulatiry (CNM) [5],
Markov CLustering (MCL) [20], LDA-G (LDA) [9],

and Cross Associations (CA) [4]. The LUV and CNM
algorithms have been successfully used in a recent
work on social networks [14]. All five algorithms are
among the most popular techniques used for cluster-
ing graphs. We refer the reader to the cited papers
for details. For PBA, a good algorithm is one that
has high classification accuracy (where homogeneous
communities are formed) and low computational
time. Figure 3 shows the accuracy and runtime results
of the aforementioned five community discovery
algorithms on our trace graphs. The error bars show
the maximum and minimum accuracy value over 20
trials. All experiments are executed on a Quad-Core
AMD Opteron(tm) Processor 2350 at 2GHz with 8GB
or RAM. In our experiments the memory requirements
never exceeded 4GB.

Takeaway: Louvain (LUV) is an order of magnitude
faster than CNM, MCL, LDA, and CA. It also pro-
duces communities with some of the best accuracies
compared to others and is parameter-free. For the
remainder of the paper, we use LUV for all of PBA’s
clustering-based algorithms.

5.2.2 Comparing different PBA-based algorithms

The HYP algorithm shows similar robustness to ob-
fuscation as CLUS, but always produce higher accu-
racy. For brevity, for the remaining of the paper we
do not explicitly report results for the CLUS algorithm.
Figure 4 reports on classification performances of var-
ious PBA algorithms when only 1% of the IP hosts in
each trace are used as seeds. The error bars show the
maximum and minimum value over all trials. Details
on the baseline classifier are given in §5.1.4.

Takeaway: All PBA methods perform well with
even only 1% seed size. NLC has lower accuracy for
the BRAZ trace due to lower homophily (defined in
63) in this trace. In the BRAZ trace, we have an or-
der of magnitude more hosts involved in multiple ap-
plications compared to the other three traces. More
on hosts with multiple application is discussed in §6.
The fastest method is HYP because the clustering step
reduces the computational cost compared to running
NLC on all the edges of the graph. In all traces, HYP
produces results in less than five minutes. Given that
each trace is five minute long, HYP can produce near
real-time classification results.

5.2.3 Effect of seed size

There are several factors that can affect seed size in
a practical setting. First is the seeding method used
and the actual application breakdown on the link (e.g.,
if most of the traffic is DNS then seeding using well-
known ports is easier). Second is the portion of traf-
fic being obfuscated (e.g., the percentage of encrypted
traffic when the seeding is based on payload). Fig-
ure 5 shows the results for the MEN trace. The other
traces give similar results so for brevity we have omit-
ted them. In Figure 5, we also show the standard error
from the different trials of the experiment. The baseline
classifier shows the accuracy we would have had if an
oracle-classifier gave the correct labels for all flows of
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Figure 5: Effect of seed size for the MFN trace. The top plot
shows overall accuracy. The bottom plot depicts standard
error over various seed sizes (across 20 trials).

the hosts selected as seeds (see more in §5.1.4).

Takeaway: As expected, increasing seed size
improves the classification accuracy. It also reduces
the standard error in the classification results. That is,
more seeds eliminate the random effect of selecting
different seeds. Moreover, we observe that NLC
utilizes the high number of initial seeds better than
the other methods, which saturate with approximately
10% seed size. With more seeds, the percentage of
neighboring IP-hosts that are seeds increases. NLC is
capable of utilizing these extra seeds since it operates
at the neighbor-level. In contrast, having more known
IP-hosts in a cluster is less important given that few
seeds are enough to label each cluster.

5.2.4 Effect of random errors in the seeds

Errors in the seeds can occur from both obfuscation
as well as from non-intentional sources (e.g., similar-
ity between traffic of two different classes). For this
experiment, we randomly select a seed and reassign
an incorrect label to it by choosing a random applica-
tion class label. From all four traces, the BRAZ trace is
the most challenging. Figure 6 summarizes the results
for the BRAZ trace using 1% seed size (top plot) and
10% seed size (bottom plot). For both seed sizes, we
increase the probability of a seed to be incorrect from 0
(no intentional errors) to 1 (all seeds have errors) and
report the overall accuracy. Compared to the BRAZ
trace, our other traces have similar or better robustness
to random errors.

Takeaway: All PBA algorithms are robust to ran-
dom errors. For example, in Figure 6 (bottom plot)
with 10% seeds and 40% of those seeds incorrect, the
overall accuracy for all algorithms is above 80%. The
higher the number of initial seeds, the more robust the
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Figure 6: Effect of random errors in the seeds for the BRAZ
trace. Other traces are qualitatively similar. The top plot
shows results using 1% seed size; the bottom plot depicts
results using 10% seed size.
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Figure 7: Seeding using seeds from a host-based and port-
based classifier. The seeds are from the combination of
BLINC and CoralReef (called ENSEMBLE).

PBA methods. This is because few incorrect seeds can
have a significant impact in a low-seeded trace graph.
We see an example of this behavior in Figure 6 (top
plot) for the BRAZ trace.

5.2.5 Seeding using existing classifiers

Our algorithms can also be used to increase the
accuracy of existing classifiers. For these experiments,
we label all traces using: (a) BLINC [12], (b) Coral
Reef [3], and (c) an ensemble result of BLINC and
Coral (ENSEMBLE). In ENSEMBLE, we keep only the
(flow-label) predictions for which the two methods
agree; all other flows are left unknown. Intuitively,
with ENSEMBLE we have less classified flows, but
higher prediction accuracy on the flows for which
we have predictions. For this experiment, we use all
classified traffic from each method (BLINC, Coral,
or ENSEMBLE) to seed our PBA algorithms. Fig-
ure 7 illustrates the results using ENSEMBLE for all
four traces. Seeding with the other methods gives
qualitatively similar results. Figure 7 also reports the
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Figure 8: Effect of connectivity obfuscation for the BRAZ
trace. This is the most challenging trace since it has the high-
est number of hosts with multiple applications.

overall accuracy of the seeding method (refereed to as
“Seeding”) for comparison.

Takeaway: Our PBA algorithms take the results
(seeds) from the initial classifier and increase the over-
all accuracy. All PBA algorithms perform very similar
in our experiments. NLC is the one having the high-
est variation in these experiments (e.g., compare the
results for the MEN trace in Figure 7). Looking closer
at the seeds from ENSEMBLE, we observe that the clas-
sified traffic has very different application breakdown
than with ground truth. Using the noisy seeds from
Coral Reef and BLINC, we observe that HYP is more
robust, which agrees with the rest of our experiments.

5.2.6 Robustness to connectivity (L4) obfuscation

All PBA algorithms are based on the connectivity
properties of hosts in the trace graphs. If P2P hosts
want to evade PBA-based detection, they can choose
to increase their connections to non-P2P destinations.
This reduces homophily (defined in §3) and makes P2P
communities harder to detect. To evaluate the robust-
ness to this level of obfuscation, we conduct the fol-
lowing experiment. We increase the number of flows
between P2P hosts by adding a constant factor k of
other applications. That is, we first measure the num-
ber of non-P2P flows from all the hosts that have at
least one P2P flow; let that number be m. We then add
m X k edges to the trace graph by randomly selecting
P2P hosts and a random server of a different class (e.g.,
DNS, Web, etc.). Figure 8 shows the P2P classification
accuracy (as measured by the F1-Score) over different k
values for the BRAZ trace. The BRAZ trace is the most
challenging for this test since it has the highest num-
ber of P2P hosts with multiple application. In other
words, it has the highest m. We also experimented with
opening connections to only a single application, such
as Web. The results are either qualitatively similar, or
much better than these shown here.

Takeaway: Even though all PBA algorithms are
affected by connectivity-level obfuscation, none of
them breaks especially for small values of factor k.
In all our traces, NLC is the most sensitive because
homophily significantly decreases as k increases. On
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Figure 9: Obfuscation by blending for the BRAZ trace. P2P
traffic is trying to tunnel its traffic using on of the following two
applications: WEB (top plot) and EMAIL (bottom plot).

the other hand, clustering-based algorithms are more
robust. This is because P2P clusters are very dense
and in order for them to be harder to identify, a P2P
host needs to open a very high number of non-P2P
connections. We stop our experiments at & = 200
since this is a very high number (200 times more
non-P2P flows than currently used) and it makes the
experiments much slower since the actual size of the
graph increases by a factor of 50 in the BRAZ trace.
Overall, HYP is the more robust to connectivity-level
obfuscation than other PBA-based algorithms.

5.2.7 Robustness to “blending” obfuscations

To evade detection, a P2P application can make its
traffic look like another application (e.g., Web). In
other words, it can try to blend-in and evade being
detected. This is different from random seed errors
(85.2.4) because here the seeder repeats the same error
every time. To emulate this, we randomly take P2P
seeds and reassign them to always be on one of the
following applications: Web, DNS, Email, or FTP. The
percentage of P2P seeds that are reassigned is called
blending intensity. Figure 9 shows the P2P F1-Score for
the BRAZ trace as we increase blending intensity. The
top plot shows the results for Web applications; the
bottom shows them for Email applications.

Takeaway: All PBA algorithms are robust to low
levels of blending obfuscation. NLC shows a higher
sensitivity to blending. If P2P blends in a large class
such as Web, then all clustering methods show high
robustness and achieve above 0.9 F1-Score even if 50%
of P2P hosts are changed. This is related to the high
population for Web in traces. Consider for example
a P2P cluster in which a portion of the seeds are reas-
signed to be Web. Aslong as the normalized frequency
of P2P hosts in the cluster (see definition of CLUS in



§4.2) is higher than Web, the cluster will continue to
be classified as P2P. That is, even though the absolute
number of seeds being Web can get higher than P2P,
the normalized frequency of P2P would be higher as
long as the overall P2P seeds in the trace are less than
Web (which is something typical in most networks to-
day). Moreover, the more P2P seeds are reassigned to
Web, the higher the number of Web seeds will become;
thereby increasing the gap between the two applica-
tions. This explains why we observe the nearly hori-
zontal line in F1-Score in Figure 9 (top plot). Clearly,
if P2P chooses to blend in a smaller class, the classifi-
cation becomes more challenging for clustering meth-
ods. In such cases, NLC shows high robustness. This is
because NLC relies on homophily (defined in §3) and
smaller classes typically play less important role in the
classification. We see this in Figure 9 (bottom plot).
If the selected class contributes a very small portion
of the traffic, such as FIP, then clustering-based meth-
ods suffer more and tend to report large portions of
P2P as for example FTP. This will overall raise suspi-
cions, given than FTP traffic is never expected to be
that high (see Table 3). Moreover, to cleverly select the
right class to blend-in requires knowledge of the appli-
cation breakdown of the backbone link. This informa-
tion is not available to the end users, and tends to be
very different from link to link, as we see in Table 3.
Given that the easier scenario is for a user to hide un-
der Web, we conclude that our HYP algorithm shows
high robustness to this type of traffic obfuscation.

6. DISCUSSION

How do we find seeds in practice? Our approach
does not depend on any specific method for obtaining
seeds, as we discussed in §4.1 and showed in our
evaluation (§5). In short, we can use external knowl-
edge such as information from sys-admins, legacy
IPs, and well-known servers. In addition, we saw
that “Googling the Internet” [19] is another method
that harnesses the power of the Web. Seeds can also
come from existing classifiers, as we show in §5.2.5.
As a last resort, we can also use an active approach
for the seeding process. For example, tools could
periodically join P2P applications and online games
to collect IPs of potential servers and users. Although
these are typically more labor-intensive some of these
measurements could be automated.

What if all traffic is obfuscated? If the obfuscations
is at the port-, payload-, and flow-level, our approach
is one of the best choices available. It should be clear
by now that our method can work, and work well, as
long as we can obtain seed information. In an extreme
case where all traffic is obfuscated, we return to the
question of how we find seeds. This is a topic we
covered earlier in the section. Note that most known
methods fail, especially if we also consider encryption
or anonymization of IP addresses: Other methods
do not use associations and cannot take advantage
of seed information in this way. If obfuscation is at
the connectivity level, we have seen in §5.2.6 that our

HYP algorithm is robust. In particular, our approach
provides an additional hurdle for an application
that wants to evade detection. Namely, apart from
obfuscating packet and flow level information, it must
establish more connections in a strategic way.

Isolated groups of flows. A potential limitation of
our methods is the labeling of isolated groups of flows.
What can we do for such flows besides reporting them
as “unknown?” We can address this by increasing
the interval of observation in an effort to create larger
connected components and repeat our analysis. In our
traces, by increasing the interval of observation to ten
minutes, the largest connected component includes
more than 95% of all the flows. Using longer intervals
introduces additional overhead (memory and CPU)
to our algorithms, which is the main reason why we
used five-minute traces. We also contacted extensive
experiments with traces up to 15 minutes, but we do
not include detailed results due to space limitations.
As a takeaway, with longer traces we get either similar
or considerably better results in all four traces when
the same percentage of initial seeds is used.

Are our traces representative? This is a question
that can haunt any trace-driven study. We find that
the use of four different traces at significantly differ-
ent locations provides a reasonable sample space. Our
traces cover two Tier-1 backbone links (MFN, PAIX),
one link from a single-home stub AS (BRAZ), and an-
other link currying trasn-pasific traffic from a large or-
ganization (WIDE). Moreover, their traffic mix varies
(see Table 3), with some links having Web, and others
DN, as their most popular application. To gain access
to these backbone data with real-IPs and payload, re-
quired several months and signing privacy agreements
with three different organizations. We will continue to
look for new backbone traces to run our algorithms,
but this is clearly not a trivial task.

How easy is it to deploy the algorithms in prac-
tice? All our algorithms operate with minimal param-
eters. The Louvain community discovery algorithm in
HYP is parameter-free and for NLC we only select the
number of iterations, where ten iterations suffice for
convergence in all our traces over a large set of con-
figurations (seeds sizes, intervals of observation, etc.).
For seeding, we used the same payload signatures, the
same port numbers in Coral Reef [3], and the same de-
fault parameters in BLINC [12], across all four back-
bone traces. We expect the algorithms and the param-
eters we use here to be reasonable starting points for
deployment in other backbone locations as well.

Host with multiple applications. Despite receiving
seeds on the hosts, all our algorithms profile traffic at
the flow-level and not at the host-level. This allows
different edges (flows) of a single host to have different
neighborhoods and therefore be associated with dif-
ferent applications. In our experiments, the resulting
percentage of hosts with multiple applications remain
very close as compared to the results from ground
truth. For example, in the PAIX trace where we have
the fewer unknown flows, the initial percentage of
hosts with multiple applications is 1.97% and the



amount reported by NLC and HYP is 1.92% and
1.84%, respectively. One should not be surprised by
the small number of hosts with multiple applications
on backbone links. Consider the following toy exam-
ple. The monitoring point is behind a large Google
server but not behind any large DNS server. Even
though the browser of all Google users will first use
DNS, the actual DNS flows might never cross our
monitoring point. Therefore, even though all hosts
use both Web and DNS, in our view of the traffic, the
majority of the hosts are only observed to use Web.

Network Address Translation (NAT). Overall, our
approach treats NAT-ed hosts the same way as hosts
with multiple applications. In fact, how a NAT will ap-
pear in data trace has to do with: (a) how homogenous
are the users behind the NAT regarding applications,
and (b) what classes of traffic from the NAT will go
through the observation point. For example, if all the
hosts behind a NAT use the same one or the same mix
of applications, this problem is analogous to that of one
user with a mix of applications. The big difference is in
the case where the hosts have widely different sets of
applications, and all these types of flows pass through
the link of observation. In that case, the NAT appears
as a user with an unprecedented application mix.

7. SUMMARY AND CONCLUSIONS

In this paper, we address the problem of traffic
profiling at the backbone in the presence of multi-level
obfuscation. We propose Profiling-by-Associations
(PBA) as a novel approach to this problem.

The key novelty is that our approach uses only
connectivity information (“who-talks-to-whom”) in a
packet trace and some initial seeds. The seeds provide
information about the applications used by few of
the hosts in a trace. We develop four new algorithms
following the PBA approach, and show empirically
that they can effectively profile backbone traffic in the
presence of obfuscation with as little as 1% seeding
information. In particular, we highlight one of our
algorithms, called HYP, which combines both local
and global structures in the IP-to-IP graph, and shows
high robustness to all levels of obfuscation.

In terms of practical deployment, our methods are
not tied to a particular clustering algorithm or a partic-
ular source of seeds. Our experiments show that they
are quite robust to the properties of the seed informa-
tion, to connectivity obfuscation techniques, and the
specifics of our data traces.

To conclude, we believe that our approach can lead
to novel traffic analysis tools that overcome multi-level
obfuscation. In fact, our approach can be seen as: (a) a
standalone tool given seeding information, and (b) an
add-on method to increase the accuracy of an existing
profiling method (as we showed in §5.2.5).
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